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MICROBIOLOGICALLY INFLUENCED
CORROSION: CAUSATIVE ORGANISMS AND
MECHANISMS

B Little, J Lee & R Ray
Naval Research Laboratory, USA

Summary: The relationship hetween microorganisms and corrosion is both predicizhle and complex.
In aquatic environments and under some atmospheric condilions, microorganisms settle on surlaces
and alier the surlace chemisiry controlling the rates of corrosion or shilting the mechanism lor
corrasion. The resull is corrosion where none could he anticipated hased on the composition of the
bulk medium, ¢.g., low-chloride walers, and rales that arc exceptionally fast. Under some
circumstances microorganisms can also inhibit corrosion. The influence of microorganisms on
corrosion depends, nol only on the presence and aclivities of the microorganisms, but also the nalure of
the metal/alloy and the specific environmenl in which the organisms are growing, ¢.g., acrobic vs.
anacrohic, ratio of aggressive anions 10 non-aggressive anions and nutrienls.

Keywords: Causative microorganisms, Mechanisms, Microhiologically 1nfluenced Corrosion

1. INTRODUCTION

Several mechanisms for microhiologically influenced corrosion (MIC), inchuding conoblement of passive alloys and
degradation of carrosion inhibitors, are not attribuled lo specific types of microorganisms, hul 10 microorganisms in
general, Other mechanisms for MIC are associaled wilh specific microorganisms. The organisms known 1o influence
carrosion are physiologically diverse and have frequently been grouped by either an electron accepior or an energy source
that is linked 10 the resulling corrosion, e.g. sulfate -reducing and iron-oxidizing. While a corrosion mechanism may be
attrihuted to a single group of organisms, the most aggressive MIC occurs with natural populations made up of many Lypes
ol microorganisms. Furthermore, a single type of microorganism can simultaneously affect corrosion via several
mechanisms. Cell death within a well-developed hiolilm does not necessarily mean an end to the influence on corrosion.
For example, pilting cotrosion of some alloys continues under deposils ol iron-oxidizing bacteria independent of hacterial
activity. Similarly, microhiologically gencrated iron sulfide accelerates corrosion of some malerials in the ahsenee ol
viable cells.

Identilication of specilic microorganisms associaled wilh corrosion products may not provide insight into failure
mechanisms. Under some circumstances, microorganisms are altracted 1o corroding sites and their accumulation is the
result of corrosion (Franklin et al. 2000). In addition, Jiglctsova ef al., (2004) and Rodin e al. (2005) demounstrated that the
corrosive propertics of biofilms varied with cullure condilions. They used mild stecl coupons cxposed 10 a natural
consortiom of bacteria isolated from oil-processing waters. The organisms included oil-oxidizing acrobes and sulfate-
reducing hacleria (SRB). During biofilm formation in glucose-mineral medium with peplone, corrosion loses, as measured
hy weight loss, increased vs. sterile control. Corrosion decreased when the same coupons with hiofilms were transferred
into coriched Luria-Berlani medium. An increase in corrosion was obscrved when coupons were transferred from Luria-
Bertani 1o the minimal medium. Their data indicate 1hat environmental cendilions determine the specific mivrohiological
effeet on corrosion processes ~ nol the individuat organisms,

The types of microorganisms involved in corrosion, and consequently the mechanisms for MIC, are continuously heing
updated. The Tollowing sections provide an overview of polential MIC mechanisms, causalive microorganisms and the

covitonments in which they could be important,

2. MIC MECHANISMS THAT ARE COMMON TO ALL MICROORGANISMS
2.1 Consnmption ot Oxyanions

g n . o P R 5 o 2] g
Molar ratios of aggressive ons to inhihiting ions {e.g., CI' 10 NO2 + 50, 7) are nsed to predict whether an electrolyte can
sustain a localized corrosion reaction. The relationship between the concentration ol inhibitive and aggressive anions
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corresponds lo competitive uptake of the anions by adsorption or ion exchange at a fixed number of sites al the oxide
surface. Microorganisms can alter the corrosivity of an electrolyte by eonsuming inhibiting anions (Little 2003), Increasing
chloride concentration shifts the critical pitting potential to more active {negative) values. The potential is shified to more
noble (positive) values by the presence of other anions, particularly oxyanions (ClO,, S0,-%, NDy, PO, NO; and OM'.

* The concentrations and types of anions required for corrosion inhibition are extremely speeific for both metals and
cnvironments, To be Tully effective, inhibitor anions must be present in certain minimum coneentrations. “ln many service
applications excursions in solution chemistry, tlemporary loss of inhibiter or transient increases in lemperature may give
rise to localized corrosion in an otherwise inhibited system™ (Turnbull et al. 2002). At concentrations helow the eritical
value, inhihitive anjons may act aggressively and stimulate breakdown of oxide films. Salvarezza and Videla (1984) nsed
pitting potential 1o assess MIC of aluminum alloys. During growth of the fungus Cladosporium resinae, nitrate and
phosphate were incorporated into the hiomass increasing the chloride/inhibitor ion ratio. In their experiments, lungal
uptake of inhihitors was the principal cause of the pitting potential decrease during microbial growth.

2.2 Inactivation of Corrosion Inhibitor

Biofilms reduce the effectiveness of corrosion inhibitors by creating a diffusion harrier between the metal surface and the
inhihitor in the bulk solation. Furthermore many of the compounds ased as corrosion inhihitors can provide nutrients,
Amines and nitrites used as corrosion inbihitors can be degraded by microorganisms, decreasing the cffectiveness of the
compounds and increasing the microhial populations. Cooke et al. (1995) reponted thut chromate (K CrO,) was inellective
as a corrosion inhihitor in an ¢lectricity generating station because chromate-reducing hacteria hlocked pipes with
precipitated chromium (11 oxide.

2.3 Ennoblement

Microhial colonization of passive metals can shift E,, in the nohle direction and produce accompanying increases in
current densily and polarization slope at mild cathodic potentials, Ennoblement has been observed in fresh, estuarine and
marine waters with many metals and alloys. The phenomenon is particufarly important for alloys which have a pitting
potential a few hundred millivolts more noble than the open-circuil potential, e.g., 300 series stainless steels, aluminum and
nickel alloys. Ennoblement in marine waters has been attrihuted 1o depolarization of the oxygen reduetion reaetion,
acidification of the eleetrode surface, the combined effects of elevated H,0); and deercased pH and the praduction of
passivating siderophores, bul not to specific microorganisms, For a review sec Little er af. (2008).

2.4 Oxygen Concentration Cells

Any geomelrical factor that results in a high oxygen concentration in one area and a low concentration at another will
create a differential cell, including the presence of microbial eells on a surface. Adsorbed cells grow, reproduce and Torm
colonies that are physical anomalies on a metal surface, resulting in local anodes and cathodes and the formation of
differential aeration cells. Under aerobic conditions, areas under respiring colonies hecome anodic and surrounding arcus
hecome cathodic (Little and Lee 2007).

2.5 Metal Concentration Cells

Microorganisms on surfaces produce polymers and form a gel matrix on the metal. In general, exopolymers are acidic and
contain lanctional groups that hind metals (Geesey ct al, 1986). Nivens er al. (1986) demonstrated that Vibrio natriegens
increased the corrosion rate ol 304 stainless steel coupons during a six-day incubation. The corrosion rate hegan o
increase when colonies ol microorganisms were detected on the surlace. The most rapid increase in cotrosion rate,
however, correlated with the formation of extracelfular polymer.

A THE CAUSITIVE ORGANISMS

The specilic microorganisms that can inlluence corrosion are Trom all three main branches of the tree of lile, i.c., hacteria.
archaea and eukaryota (Little and Lee 2009). Archaea and bacteria are single-cell prokaryotes and have no cell nuclews or
any other organelles within their cells. Generally, archaca and bacleria are similar in size and shape, although a lew archaca
have very unusual shapes, such as the flat and square-shaped cells. Despite the visoal similarity to bacteria, archaca possess
unique biochemistries, genes and several metabolic pathways that are more elesely related to these of eukaryotes. The cells
of eukaryoles possess a clearly defined nucleus, bounded by a membrane, within which DNA is Tormed into distinct
chromosomes. Eukaryotic cells also contain mitochondria and other structures organelles that, together with a delined
nucleus, are lacking in the cells of prokaryotes. Typically, eukaryotic cells are ten limes larger in cach dimension than
bacteria and archaca. Fungi, i.e., yeasts, molds and mushrooms ate eukaryotic organisms.

3.1 Sulfide-Producing Prokaryotes
For decades, it has been assumed that microbial sulfide production was Lhe result of the activilies of sullate -reducing

bacteria (SRB). However, some archaea can reduce sulfate to sulfide and some bacteria can reduce thiosulfate to sulfide.
The inclusive term for microorganisms capable of sulfide produetion is sulfide-producing prokaryotes (SPIPP).
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The most obvions mechanism wherchy SPP influence corrosion is hy formation of a metal sulfide on a surface. McNeil
and Odoem (1994) prepared a model that can be used to predict susceptibility of metals to the formation of various metal -
sulfide mingrals (derivatization) by microbiologically produced sulfides. The model assumes that SSP MIC is initiated hy
sulfide-rich reducing conditions in a hiofilm and that under lhose conditions the oxide layer on the metal {or the metal
itself) is destahilized and acts as a source of metal ions. Sulfide ions react to produce sulfide compounds in micron-sized
particles that are in some cases crystalline. The consumption of mctal ions at the microbe surface is balanced by release ol
surlace ions until the oxide is tolally consumed. If the reaction lo convert the metal oxide to a metal sulfide has a positive
Gihhs free cnergy under surface conditions, the sulfides will not strip the protective oxide and no corrosion will take place.
ITthe Gibbs free energy for that reaction is negative, the reaction will proceed, sulfide microcrystals will redissolve and
reprecipilate as larger, generally more sulfur-rich crystals. The model accurately predicts that titanium alloys will be
immune to derivatization and that carhon steel and copper alloys will he vulnerable. The model is limited 10

thermody namic predictions as (o whether or not a reaction will take place and docs not consider metal toxicity t the
organisms, tenacity of the resulting sulfide or others factors that influence corresion rate. The model does not make specilic
predictions for low and medium grade stainless steel alloys.

Hamilton (2003) concluded thal all mechanisms for MIC involved a process of eleciron transfers from base metal to
oxygen as the ultimate electron acceplor through a series of coupled reactions. The specific coupled reactions varied with
mechanism and causative organism. He proposed that in the case of SRB and carbon steel, sulphate, an intermediate
electron acceptor, is reduced to sulphide lhat reacls with iton to form a corrosion product that ultimately transfers electrons
to oxygen. In the model, sulphate is the terminal electron acceptor in anacrohic respiration, but oxygen is the lerminal
electron acceptor in the corrosion reaction. Consistent with that model, most reported cases of SRB-indnced corrosion of
carhon stecl in marine waters are in environments with some dissolved oxygen in the hulk medium. Using mild steel and
weight loss measurements Hardy and Bown (1984) reported that successive acration-deaeration shifts caused variation in
the corrosion rate. The highest corrosion rates in their experiments were observed during periods ol acration,

Lee er al. (2005) designed Tield experiments to evaluate deoxygenation of natural seawater as a corrosion control measure
for unprotected carbon steel seawater hallast tanks. Carbon steel exposed to cycles of hypoxic scawater and oxygenuted
atmosphere had higher corrosion rates than coupons exposed to cither consistently acrobic or deoxygenated conditions.

Additional corrosion mechanisms have hecn attributed to SRB, including cathodic depelarization, anodic depofarization,
relcase ol exopolymers capahle of binding metal ions, sulfide induced stress corrosion cracking and hydrogen induced
cracking or blistering, Recent reviews suggest that SRI3 can influence a number of corrosion mechanisms simultancously
{Beech and Chung 1995).

3.2 Acid-Producing Bacteria and Fungi

Elemental sulfur, thiosulfates, metal sulfides, H.S, and tetrathionates can be oxidized to sulfuric acid by thiohacilli. Most
heterotrophic hacteria secrele organiv acids during fermentation of organic suhstrates. The kinds and amounts of acids
produced depend on the type of microorganisms and the available suhstrate molecules. Organic acids may force a shift in
the tendeney for corrosion 1o oceur. The impact of acidic metabolites is intensified when they are trapped at the
biofilm/metal interface. Organic acids produced by fungi were identificd as the cause for pitting failures in painted carhon
stecl holds of a hulk carrier (Stranger-Johannesen 1986) and aluminum fuel slorage tanks (Salvarczza et al. 1983).

3.3 Ammonia Production

Many organisms produce NH3 from the metabolism of amino acids or the reduction of nitrite or nitrate, forming NH4".
Pope ef al. (1984) documented corrosion failures in copper alloys due 1o the presence and activities ol ammonia-producing
bacteria.

34 Metal-Depositing Bacteria

Deposition of iron and manganese oxides occurs widely in natural walters, and is a dominant control in geochemical cycling
ol these elements. Mineralizution can he carried out by a variety of organisms including hacteria, yeast and Tungi (Nealson
ctal. 1988). Ghiorse (1984) prepured a review of metal-depositing microorganisms in which he identiticd microorganisms
that catalyze the oxidation ol metals, others that accumulate abiotically oxidized metal precipitates and stilf others that
derive energy hy oxidizing melals.

Extracetlular iron hiomineralization has been studicd extensively in fresh water. Some iron-oxidizing microorganisms
extrude polymeric structures upon which they deposit the ferric iron derived from their metabolism. Chan er al. {2004,
2009 concluded that polymer ditecled iron hydroxide mineralization is a general phenomenon that can occur in any system
containing acidic polysaccharides and iron. Banficld er al. (2000) suggested that negatively charged polymers (e.g.,
Gallionella sialks) served as lemplaies for aggregates of enzymalically produced iron oxides, Ghiorse and Ehrlich (1992)
suggested that microhial mineral formation can take place in intimatc association with cells forming mineralized structures,
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They further concluded that the resulting structures eould be used to identify a biological role in the fermation in the
absence of viable cells. Working with hyphal budding bacteria, Ghiorse and Hirsch (1979} deseribed the accumutation of
positively charged iron hydroxides on negatively charged haeterial polymers. Once deposited, the iron oxides carried
negative charges so that such a process could continue indefinitely without any biological activity. The only required
biological input is the initial production of a negatively charged polymer. Sogaard er af, (2001) deseribed a similar process
for biological iron precipitation by Gallionefla in a polluted ground water (pH 5). Iron precipitated on the surface of the
stalks until the negative charge elfect was eliminated. The collotdal iron was condensed and the result was a dense deposit.
Mial er al. (2009) demonstrated precipitation of gocthite on polymerie fibers extending Irom the cells ol an iron-oxidizing,
hacterium. They atso demonstrated a redox gradient, with the proportion of Fe(H1) highest near the cells and the proportion
ol Fe(I1) increasing at distance from the cell.

Bacteriogenic iran oxides, formed in response 1o chemical or bacterial exidation of Fe(ll) o Fe(lIl}, are made up of intact
and/or partly degraded remains of baeterial cells mixed with amorphous hydrous Fe(111) oxides (Ferris 2005).
Bacteriogenie iron oxides have reactive surfaces and act as sorbents of dissolved metal iens and enrichments of lead,
cadmium, aluminum, ehromium, zine, manganese, and strontium, in addition to eopper, have been reported. Sarin ef al.
(2061, 2004) reported the absorplion of copper in iron corrosion seales. Gerke er al. (2008) demonsirated that heavy
metals, including copper, were either Lrapped within the structure or sorhed onto regions of the tubereles.

The iron-oxidizing genera that are usually cited as eausing MIC are Gallionella, Sphaeroiilus, Crenothrix. Siderocapsa,
Clorothrix and Leprotfirix. {ron-oxidizing baeteria (10B) have been implicated in MIC sinee the 1960s. [1 is well
established that wbercle formation by 10B produces an oxygen coneentration cell. Most of the documented MIC case
histories assoviated with 10B wwhercle formation have invelved exposure of a 304 or 316 stainless steel in untreated well
waler (200-300 ppm) and chlorinated drinking water. 10B form dense deposits, exeluding oxygen from the arca
immediately under the deposit. In an oxygenated environmenl, the area deprived of oxygen becomes a relatively small
anode compared 1o the large surrounding oxygenaled cathode. Melal is oxidized at the anode and pH decereases. The
exlent of the decrease is determined hy Ihe alloy eomposition. For this reason, oxygen eoncentration cells produce
particularly aggressive corresion on 300 series stainless steels, containing 17.5 1o 20 pereent chromium, Cl° migrates from
the electrolyle to the anode Lo neutralize charge, forming heavy metal chlorides that are extremely corrosive. Under Lhese
circumstances, pilling involves the conventional features of differential acration, a farge cathode: anode surface area and
the development of acidily and metallie ¢hlorides,

Tuber¢les have also been observed on carhon steel exposed in fresh water. Ray er al. (2008) demonstrated that dilterential
acration cells alone do not cause aggressive corrosion of carhon steel in Iresh water. Afler examining tuberctes on carhon
steel from multiple Tresh water environments and of varying ages, they reported that wbercles consistently had an vuler
crust of goethite and lepidocrocite and an inner shell of magnetite. Core regions dilfered in structure, compaosition,
chemistry and microbiology. The presence of wbereles on earben steel and cast iron could not be used 1o conclade
localized corrosion direcily under the wbercles or a role for haeteria in their lermation. Tubereles formed on earhon siee!
pilings in Duluth-Superior harbor, Minnesola and Wisconsin, did create anacrobic areas under the tuhercles causing copper
dissolved in the water to precipitate onto the surfaee and form galvanie eells and localized corrosion,

As a resull of microbial action, manganese oxide deposils ean form on submerged malerials including metal, stone, glass,
and plastic and can oceur in natural waters with manganese levcels as fow as 10-20 ppb (Dickinson and Lewandowski
1996). They demonstrated that mierobially deposited manganese oxide on a stainless steel in fresh waler caused an
increase in E..,, and increased eathodic current density al potentials above <200 mV (vs. saturaled calomel reference
clectrode (SCE)). Enncbled E,,,,, can ¢nhance the risk of pit nucleation, while elevaled cathodie current density impedes
repassivation.  Biomineralized manganic oxides are efficient eathodes and increase cathodic current densily on slainless
steel by several decades at potentials between roughly -200 and +400 mVy. The extent to which the clevated current
densily ean be maintained is eontrolled by the electrical capaeity of the mineral relleeting both lotal aceumulation and
eonductivity of the mincral-biopolymer assemblage (only material in eleetrical contaet with the metal will be eathodically
active). The biomineralization rate and the corrosion eurrenl conlrol oxide aceumnulation, in that high corrosion eurrents
will discharge Lhe oxide as rapidly as it is formed.

3.5 Metal reduction

Dissimilatory iron and/or manganese reduction occurs in several microorganisms, including anacrobic and facultalive
acrohic hacteria. Inhihitor and competition experiments suggest that Mn(IV) and Fe(ll) are efficient electron aceeptors
similar 1o nitrate in redox ability and are capable of oul-compeling electron acceptors ol lower potential, such as sulfate or
carhon dioxide. Little ef al. (1997) used synthetic iron oxides {goethite, aFeOON; hematite, Fe20;; and ferribydrite,
Fe(O11):) as model compounds 1o simulate the mineralogy of passivating [Tlms on carbon steel. Rates of reduction,
measured by alomic absorption spectroscopy ol Fe(l1) in solution as a lunetion of lime, for the three minerals indicale that
afler a 24-hr exposure o Shewanella putrefaciens, initial reduction rates lor goethite and ferrihydrite were approximately
the same and were 5 times faster than the reduction rate lor hemalite. After 22 days the integrated reduction rates for
gocthite and ferrihydrite were much Taster than those measured at 24 hours, The hematite reduction rate actaally slowed
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over the exposure period so that alter 22 days the overall integrated rate was 50 umes slower than reduclion rates lor
gocthite and lerrihydrite (Roden and Zachara 1996). Obuckwe er al. (1981) observed that Pseudomonas sp., an iron-
reducing bacterium, acceleraled the corrosion of 1018 siecl.

3.6 Methane Producers

Boopathy and Danicls (1991) demonstrated that methanogens could use H; produced by the “eathodic depolarization-
mediated oxidation ol elcmental iron” to produce methane and influence corrosion. In many environments, methanogens
and SRI3 coexist in a symbiotic relationship: SR producing hydrogen, CO; and acetale by fermentation, and methanogens
consuming these compounds. Larsen et al (2011) using molecular microbiology methods to identify microorganisms in
waler and solids in a producing oil well, Tound that methanogens sometimes vutnumbered SPP and suggested that their
numbers should be monitored in MIC risk assessments.

4. SUMDMARY

With the introduction of cullure-independent molecular microhiology methods it has become possihle to detect many
microorganisms associated with corrosion that were not previously detecled with culture techniques. As a resull, the tist of
causative organisms and mechanisms for MIC is constantly being updated. However, in all cases, the inlluence of

microorganisms on corrosion depends on the nature of the metal/alloy and the specilic environment in which the organisms
are growing.
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